vector space - определение. Что такое vector space
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое vector space - определение


Vector space         
  • Addition of functions: the sum of the sine and the exponential function is <math>\sin+\exp:\R\to\R</math> with <math>(\sin+\exp)(x)=\sin(x)+\exp(x)</math>.
  • planes]] (green and yellow).
  • 2'''w'''}} are shown.
  • '''w'''}} (red) is shown.
  • ''y''}} yields an isomorphism of vector spaces.
  • 200px
THE BASIC ALGEBRAIC STRUCTURE OF LINEAR ALGEBRA; A MODULE OVER A FIELD, SUCH THAT ITS ELEMENTS CAN BE ADDED TOGETHER OR SCALED BY ELEMENTS OF THE FIELD
VectorSpaces; Vector Space; Linear space; Vector theory; Vector spaces; Vectorspace; Real vector space; Complex vector space; Coordinate space; Coordinate vector space; Coordinate linear space; Linear coordinate space; Abstract vector space; Complex Vector Spaces; Field of scalars; Complex vector; Real vector; Vectors and Scalars; Vectorial space; Vectorial Space; Linear vector space; Space-vector; Space vector; General vector space; Several variables; Vector line; Vector plane; Vector hyperplane; Applications of vector spaces; Vector space over a field
In mathematics, physics, and engineering, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field.
vector space         
  • Addition of functions: the sum of the sine and the exponential function is <math>\sin+\exp:\R\to\R</math> with <math>(\sin+\exp)(x)=\sin(x)+\exp(x)</math>.
  • planes]] (green and yellow).
  • 2'''w'''}} are shown.
  • '''w'''}} (red) is shown.
  • ''y''}} yields an isomorphism of vector spaces.
  • 200px
THE BASIC ALGEBRAIC STRUCTURE OF LINEAR ALGEBRA; A MODULE OVER A FIELD, SUCH THAT ITS ELEMENTS CAN BE ADDED TOGETHER OR SCALED BY ELEMENTS OF THE FIELD
VectorSpaces; Vector Space; Linear space; Vector theory; Vector spaces; Vectorspace; Real vector space; Complex vector space; Coordinate space; Coordinate vector space; Coordinate linear space; Linear coordinate space; Abstract vector space; Complex Vector Spaces; Field of scalars; Complex vector; Real vector; Vectors and Scalars; Vectorial space; Vectorial Space; Linear vector space; Space-vector; Space vector; General vector space; Several variables; Vector line; Vector plane; Vector hyperplane; Applications of vector spaces; Vector space over a field
<mathematics> An additive group on which some (scalar) field has an associative multiplicative action which distributes over the addition of the vector space and respects the addition of the (scalar) field: for vectors u, v and scalars h, k; h(u+v) = hu + hv; (h+k)u = hu + ku; (hk)u = h(ku). [Simple example?] (1996-09-30)
linear space         
  • Addition of functions: the sum of the sine and the exponential function is <math>\sin+\exp:\R\to\R</math> with <math>(\sin+\exp)(x)=\sin(x)+\exp(x)</math>.
  • planes]] (green and yellow).
  • 2'''w'''}} are shown.
  • '''w'''}} (red) is shown.
  • ''y''}} yields an isomorphism of vector spaces.
  • 200px
THE BASIC ALGEBRAIC STRUCTURE OF LINEAR ALGEBRA; A MODULE OVER A FIELD, SUCH THAT ITS ELEMENTS CAN BE ADDED TOGETHER OR SCALED BY ELEMENTS OF THE FIELD
VectorSpaces; Vector Space; Linear space; Vector theory; Vector spaces; Vectorspace; Real vector space; Complex vector space; Coordinate space; Coordinate vector space; Coordinate linear space; Linear coordinate space; Abstract vector space; Complex Vector Spaces; Field of scalars; Complex vector; Real vector; Vectors and Scalars; Vectorial space; Vectorial Space; Linear vector space; Space-vector; Space vector; General vector space; Several variables; Vector line; Vector plane; Vector hyperplane; Applications of vector spaces; Vector space over a field
<mathematics> A vector space where all linear combinations of elements are also elements of the space. This is easy for spaces of numbers but not for a space of functions. Roughly, this is to say that multiplication by numbers, and addition of elements is defined in the space. (2000-03-10)